Sunday, October 6, 2019

calculus - Show that every monotonic increasing and bounded sequence is Cauchy.



The title is kind of misleading because the task actually to show




Every monotonic increasing and bounded sequence $(x_n)_{n\in\mathbb{N}}$ is Cauchy



without knowing that:




  • Every bounded non-empty set of real numbers has a least upper
    bound. (Supremum/Completeness Axiom)

  • A sequence converges if and only if it is Cauchy. (Cauchy
    Criterion)

  • Every monotonic increasing/decreasing, bounded and real
    sequence converges to the supremum/infimum of the codomain (not sure

    if this is the right word).



However, what is allowed to use listed as well:




  • A sequence is called covergent, if for $\forall\varepsilon>0\,\,\exists N\in\mathbb{N}$ so that $|\,a_n - a\,| < \varepsilon$ for $\forall n>N$. (Definition of Convergence)

  • A sequence $(a'_k)_{k≥1}$ is called a subsequence of a sequence $(a_n)_{n≥1}$, if there is a monotonic increasing sequence $(n_k)_{k≥1}\in\mathbb{N}$ so that $a'_{k} = a_{n_{k}}$ for $\forall k≥1$. (Definition of a Subsequence)

  • A sequence $(a_n)_{n≥1}$ is Cauchy, if for $\forall\varepsilon>0\,\,\exists N=N(\varepsilon)\in\mathbb{N}$ so that $|\,a_m - a_n\,| < \varepsilon$ for $\forall m,n>N$. (Definition of a Cauchy Sequence)

  • (Hint) The sequence $(\varepsilon\cdot\ell)_{\ell\in\mathbb{N}}$ is unbounded for $\varepsilon>0$. (Archimedes Principle)




Would appreciate any help.


Answer



If $x_n$ is not Cauchy then an $\varepsilon>0$ can be chosen (fixed in the rest) for which, given any arbitrarily large $N$ there are $p,q \ge n$ for which $p\varepsilon.$



Now start with $N=1$ and choose $x_{n_1},\ x_{n_2}$ for which the difference of these is at least $\varepsilon$. Next use some $N'$ beyond either index $n_1,\ n_2$ and pick $N'\varepsilon.$ Continue in this way to construct a subsequence.



That this subsequence diverges to $+\infty$ can be shown using the Archimedes principle, which you say can be used, since all the differences are nonnegative and there are infinitely many differences each greater than $\varepsilon$, a fixed positive number.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...