Tuesday, September 3, 2019

trigonometry - Find domain of function $logleft(cosleft(log xright)right)$




Find domain of function $f(x)=\log\left(\cos\left(\log x\right)\right)$




At the beginning $x>0$
but I have no idea how to handle logarithm
$\cos\left(\log x\right)>0\\\log x>\arccos 0=\frac{\pi}{2}\\\log x>\log 10^{\frac{\pi}{2}}\Rightarrow x>10^{\frac{\pi}{2}}$
I think I'm doing something wrong


Answer




We need




  • $x>0$


  • $\cos(\log x)>0$




$$\implies 0\le \log x < \frac \pi 2 \cup -\frac \pi 2 +2n\pi < \log x <\frac \pi 2 +2n\pi$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...