How to calculate
∫sin6(x)sin6(x)+cos6(x)dx?
I already know one possible way, that is by :
∫sin6(x)sin6(x)+cos6(x)dx=∫1−cos6(x)sin6(x)+cos6(x)dx
=x−∫11+tan6(x)dx
Then letting u=tan(x), we must solve
∫1(1+u6)(1+u2)du
We can reduce the denominator and solve it using Partial Fraction technique. This is quite tedious, I wonder if there is a better approach.
Using same approach, for simpler problem, I get
∫sin3(x)sin3(x)+cos3(x)dx=x2−ln(1+tan(x))6+ln(tan2(x)−tan(x)+1)3−ln(sec(x))2+C
Answer
Let us take:
I=∫sin6(x)sin6(x)+cos6(x)dx
then
I=∫−cos6(x)sin6(x)+cos6(x)dx+x
giving2I=∫sin6(x)−cos6(x)sin6(x)+cos6(x)dx+x
This can be written as (using identities like a3−b3 and a3+b3)
2I=∫(sin2(x)−cos2(x)(1−sin2(x)cos2(x))(1−√3sin(x)cos(x)(1+√3sin(x)cos(x))dx+x
2I=12(∫(sin2(x)−cos2(x)(1−sin2(x)cos2(x))(1+√3sin(x)cos(x))+∫(sin2(x)−cos2(x)(1−sin2(x)cos2(x))(1−√3sin(x)cos(x)))+x
Evaluating the integrals separately by using u=1+√3sin(x)cos(x)
for first one gives
∫(sin2(x)−cos2(x)(1−sin2(x)cos2(x))(1+√3sin(x)cos(x))=1√3∫(sin(x)cos(x)−1)(sin(x)cos(x)+1)udu
Now use sin(x)cos(x)=u−1√3
which will evaluate the integral as u26√3−2u3√3−2ln(u)3√3...Similar approach for other with v=1−√3sin(x)cos(x)
The final value is
I=x2−sin(x)cos(x)6+ln(1−√3sin(x)cos(x))6√3−ln(1+√3sin(x)cos(x))6√3+C
No comments:
Post a Comment