How to evaluate I=∫10ln3(1−x)Li3(x)xdx ?
I came across this integral I while I was trying to compute two advanced sums of weight 7. The problem with my approach is that when I tried to evaluate I5
(shown below), the main integral I appeared there which cancels out from both sides, so any idea how to evaluate I5 or I?
Thanks.
Here is my trial:
Using the two generalized integral expressions of the polylogrithmic function which can be found in the book (Almost) Impossible Integrals, Sums and series page 4.
∫10xlnn(u)1−xudu=(−1)nn!Lin+1(x)⟹Li3(x)=12∫10xln2(u)1−xudu
u∫10lnn(x)1−u+uxdx=(−1)n−1n!Lin+1(uu−1)⟹∫10ln3x1−u+uxdx=6uLi3(uu−1)
We have
I=∫10ln3(1−x)Li3(x)xdxuse(1)=12∫10ln3(1−x)x(∫10xln2u1−xudu)dx=12∫10ln2u(ln3(1−x)1−xudx) du1−x ↦ x=12∫10ln2u(∫10ln3x1−u+uxdx) duuse (2)=3∫10ln2uuLi4(uu−1)duIBP=−∫10ln3uu(1−u)Li3(uu−1)du
Now we need the trilogarithmic identity:
Li3(x−1x)=ζ(2)lnx−12ln2xln(1−x)+16ln3x−Li3(1−x)−Li3(x)+ζ(3)
set 1−x=u to get
Li3(uu−1)=ζ(2)ln(1−u)−12ln2(1−u)lnu+16ln3(1−u)−Li3(u)−Li3(1−u)+ζ(3)
Going back to our integral
I=−∫10ln3uu(1−u)(ζ(2)ln(1−u)−12ln2(1−u)lnx+16ln3(1−u)−Li3(u)−Li3(1−u)+ζ(3))du=−ζ(2)∫10ln3uln(1−u)u(1−u)du⏟I1+12∫10ln4uln2(1−u)u(1−u)du⏟I2−16∫10ln3uln3(1−u)u(1−u)du⏟I3+∫10ln3uLi3(u)u(1−u) du⏟I4+∫10ln3uu(1−u)(Li3(1−u)−ζ(3))du⏟I5
I1=∫10ln3uln(1−u)u(1−u)du=−∞∑n=1Hn∫10un−1ln3udu=6∞∑n=1Hnn4
.
I2=∫10ln4uln2(1−u)u(1−u)du=∞∑n=1(H2n−H(2)n)∫10un−1ln4udu=24∞∑n=1H2n−H(2)nn5=24∞∑n=1H2nn5−24∞∑n=1H(2)nn5
I3=∫10ln3uln3(1−u)u(1−u)du=∫10ln3uln3(1−u)udu+∫10ln3uln3(1−u)1−udu⏟1−x ↦ x=2∫10ln3uln3(1−u)u duIBP=32∫10ln4uln2(1−u)1−udu=32∞∑n=1(H2n−H(2)n)∫10unln4udu,reindex=32∞∑n=1(H2n−H(2)n−2Hnn+2n2)∫10un−1ln4udu=32∞∑n=1(H2n−H(2)n−2Hnn+2n2)(24n5)=36∞∑n=1H2nn5−36∞∑n=1H(2)nn5−72∞∑n=1Hnn6+72ζ(7)
.
I4=∫10ln3uLi3(u)u(1−u)du=∞∑n=1H(3)n∫10un−1ln3udu=−6∞∑n=1H(3)nn4
I5=∫10ln3uu(1−u)(Li3(1−u)−ζ(3))du=∫10ln3uu(Li3(1−u)−ζ(3))du⏟IBP+∫10ln3u1−u(Li3(1−u)−ζ(3)) du⏟1−u ↦ u=14∫10ln4uLi2(1−u)1−udu+∫10ln3(1−u)Li3(u)udu⏟our main integral−ζ(3)∫10ln3u1−udu=14∫10ln4uLi2(1−u)1−udu+I+6ζ(3)ζ(4)
In my solution here I came across the remaining integral and here is the result:
14∫10ln4uLi2(1−u)1−udu=6ζ(2)ζ(5)+36ζ(7)−30∞∑n=1Hnn6−6∞∑n=1H(2)nn5
Then
I5=I+6ζ(3)ζ(4)+6ζ(2)ζ(5)+36ζ(7)−30∞∑n=1Hnn6−6∞∑n=1H(2)nn5
.
Note: We can not use the two sums ∑∞n=1H3nn4 and ∑∞n=1HnH(2)nn4 in our solution because the integral I is the key to evaluate these two sums.
No comments:
Post a Comment