Monday, September 23, 2019

real analysis - Challenging integral: Evaluate int10fracln3(1x)operatornameLi3(x)xdx

How to evaluate I=10ln3(1x)Li3(x)xdx ?



I came across this integral I while I was trying to compute two advanced sums of weight 7. The problem with my approach is that when I tried to evaluate I5

(shown below), the main integral I appeared there which cancels out from both sides, so any idea how to evaluate I5 or I?



Thanks.



Here is my trial:



Using the two generalized integral expressions of the polylogrithmic function which can be found in the book (Almost) Impossible Integrals, Sums and series page 4.



10xlnn(u)1xudu=(1)nn!Lin+1(x)Li3(x)=1210xln2(u)1xudu




u10lnn(x)1u+uxdx=(1)n1n!Lin+1(uu1)10ln3x1u+uxdx=6uLi3(uu1)



We have



I=10ln3(1x)Li3(x)xdxuse(1)=1210ln3(1x)x(10xln2u1xudu)dx=1210ln2u(ln3(1x)1xudx) du1x  x=1210ln2u(10ln3x1u+uxdx) duuse (2)=310ln2uuLi4(uu1)duIBP=10ln3uu(1u)Li3(uu1)du




Now we need the trilogarithmic identity:



Li3(x1x)=ζ(2)lnx12ln2xln(1x)+16ln3xLi3(1x)Li3(x)+ζ(3)



set 1x=u to get



Li3(uu1)=ζ(2)ln(1u)12ln2(1u)lnu+16ln3(1u)Li3(u)Li3(1u)+ζ(3)



Going back to our integral

I=10ln3uu(1u)(ζ(2)ln(1u)12ln2(1u)lnx+16ln3(1u)Li3(u)Li3(1u)+ζ(3))du=ζ(2)10ln3uln(1u)u(1u)duI1+1210ln4uln2(1u)u(1u)duI21610ln3uln3(1u)u(1u)duI3+10ln3uLi3(u)u(1u) duI4+10ln3uu(1u)(Li3(1u)ζ(3))duI5






I1=10ln3uln(1u)u(1u)du=n=1Hn10un1ln3udu=6n=1Hnn4
.






I2=10ln4uln2(1u)u(1u)du=n=1(H2nH(2)n)10un1ln4udu=24n=1H2nH(2)nn5=24n=1H2nn524n=1H(2)nn5







I3=10ln3uln3(1u)u(1u)du=10ln3uln3(1u)udu+10ln3uln3(1u)1udu1x  x=210ln3uln3(1u)u duIBP=3210ln4uln2(1u)1udu=32n=1(H2nH(2)n)10unln4udu,reindex=32n=1(H2nH(2)n2Hnn+2n2)10un1ln4udu=32n=1(H2nH(2)n2Hnn+2n2)(24n5)=36n=1H2nn536n=1H(2)nn572n=1Hnn6+72ζ(7)

.






I4=10ln3uLi3(u)u(1u)du=n=1H(3)n10un1ln3udu=6n=1H(3)nn4







I5=10ln3uu(1u)(Li3(1u)ζ(3))du=10ln3uu(Li3(1u)ζ(3))duIBP+10ln3u1u(Li3(1u)ζ(3)) du1u  u=1410ln4uLi2(1u)1udu+10ln3(1u)Li3(u)uduour main integralζ(3)10ln3u1udu=1410ln4uLi2(1u)1udu+I+6ζ(3)ζ(4)



In my solution here I came across the remaining integral and here is the result:



1410ln4uLi2(1u)1udu=6ζ(2)ζ(5)+36ζ(7)30n=1Hnn66n=1H(2)nn5




Then



I5=I+6ζ(3)ζ(4)+6ζ(2)ζ(5)+36ζ(7)30n=1Hnn66n=1H(2)nn5
.






Note: We can not use the two sums n=1H3nn4 and n=1HnH(2)nn4 in our solution because the integral I is the key to evaluate these two sums.

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...