I would like to calculate the sum of the series:
\begin{equation}
\sum_{m=M+1}^{\infty}\frac{(-1)^{m+1}}{2m+1}\sin((2m+1)\frac{\pi}{2}x)
\end{equation}
where M is big and finite.
I searched on the books and found this sum:
\begin{equation}
\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{2k-1}\sin((2k-1)x)=\frac{1}{2}\ln\tan(\frac{\pi}{4}+\frac{x}{2})
\end{equation}
Now I try to put my question in the above form. Let m-M=n and m=n+M
\begin{equation}
\sum_{n=1}^{\infty} \frac{(-1)^{n+M+1}}{2(n+M)+1}\sin(2(n+M)+1)\frac{\pi}{2}x)
\end{equation}
I do not know how to proceed further.
No comments:
Post a Comment