Tuesday, September 24, 2019

Sum of series of the form $sum frac{(-1)^{m+1}}{2m+1}sin(frac{pi}{2}(2m+1)x)$

I would like to calculate the sum of the series:

\begin{equation}
\sum_{m=M+1}^{\infty}\frac{(-1)^{m+1}}{2m+1}\sin((2m+1)\frac{\pi}{2}x)
\end{equation}
where M is big and finite.






I searched on the books and found this sum:
\begin{equation}
\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{2k-1}\sin((2k-1)x)=\frac{1}{2}\ln\tan(\frac{\pi}{4}+\frac{x}{2})

\end{equation}
Now I try to put my question in the above form. Let m-M=n and m=n+M
\begin{equation}
\sum_{n=1}^{\infty} \frac{(-1)^{n+M+1}}{2(n+M)+1}\sin(2(n+M)+1)\frac{\pi}{2}x)
\end{equation}
I do not know how to proceed further.

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...