Consider the following matrix A:
$$ A=
\begin{pmatrix}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1 \\
\end{pmatrix}
$$
I have to find the characteristic polynomial $P_A(\lambda)$ using the following approach:
$$P_A(\lambda)=\det(A-\lambda I)$$
I worked out the first part:
$$\begin{vmatrix}
-1-\lambda & 1 & 1 \\
1 & -1-\lambda & 1 \\
1 & 1 & -1-\lambda \\
\end{vmatrix}
$$
But then I get stuck calculating the determinant with all those $\lambda$ floating around.
Help? :( The answer is supposed to be $P_A(\lambda)=-(\lambda-1)(\lambda+2)^2$
Answer
You could use properties of determinants to avoid having to factor a cubic afterwards; for example:
- subtract the last column from the first two;
- add the first two rows to the third:
$$\begin{vmatrix}
-1-\lambda & 1 & 1 \\
1 & -1-\lambda & 1 \\
1 & 1 & -1-\lambda \\
\end{vmatrix}=\begin{vmatrix}
-2-\lambda & 0 & 1 \\
0 & -2-\lambda & 1 \\
2+\lambda & 2+\lambda & -1-\lambda \\
\end{vmatrix}=\begin{vmatrix}
-2-\lambda & 0 & 1 \\
0 & -2-\lambda & 1 \\
0 & 0 & 1-\lambda \\
\end{vmatrix}$$
This is the determinant of a diagonal matrix, so it is the product of the diagonal elements:
$$\left( -2-\lambda \right)^2\left( 1-\lambda \right) \color{blue}{ = 0 \iff \lambda = -2 \;\vee\; \;\lambda = 1}$$
No comments:
Post a Comment