Can we prove that $\lim_{x \to 0} \frac{x - \sin x}{x^3} = \frac 16$ using just algebra, trigonometric theorems and notable limits $\left( \mathrm{i.e. }\quad \frac{\sin x}{x} \to 1 \quad \mathrm{and} \quad \frac{1 - \cos x}{x^2} \to \frac 12 \right) $ and no l'Hospital rule, no series expansion, no Taylor series?
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
No comments:
Post a Comment