Thursday, February 22, 2018

trigonometry - How Can One Prove $cos(pi/7) + cos(3 pi/7) + cos(5 pi/7) = 1/2$




Reference: http://xkcd.com/1047/



We tried various different trigonometric identities. Still no luck.




Geometric interpretation would be also welcome.



EDIT: Very good answers, I'm clearly impressed. I followed all the answers and they work! I can only accept one answer, the others got my upvote.


Answer



Hint: start with $e^{i\frac{\pi}{7}} = \cos(\pi/7) + i\sin(\pi/7)$ and the fact that the lhs is a 7th root of -1.



Let $u = e^{i\frac{\pi}{7}}$, then we want to find $\Re(u + u^3 + u^5)$.



Then we have $u^7 = -1$ so $u^6 - u^5 + u^4 - u^3 + u^2 -u + 1 = 0$.




Re-arranging this we get: $u^6 + u^4 + u^2 + 1 = u^5 + u^3 + u$.



If $a = u + u^3 + u^5$ then this becomes $u a + 1 = a$, and rearranging this gives $a(1 - u) = 1$, or $a = \dfrac{1}{1 - u}$.



So all we have to do is find $\Re\left(\dfrac{1}{1 - u}\right)$.



$\dfrac{1}{1 - u} = \dfrac{1}{1 - \cos(\pi/7) - i \sin(\pi/7)} = \dfrac{1 - \cos(\pi/7) + i \sin(\pi/7)}{2 - 2 \cos(\pi/7)}$



so




$\Re\left(\dfrac{1}{1 - u}\right) = \dfrac{1 - \cos(\pi/7)}{2 - 2\cos(\pi/7)} = \dfrac{1}{2} $


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...