fine the limits-without-lhopital rule
$$\lim_{ x \to0^- }\frac{2^{\frac{1}{x}}+2^{\frac{-1}{x}}}{3^{\frac{1}{x}}+3^{\frac{-1}{x}}}=?$$
My Try :
$h= \frac{1}{x} :h\to - \infty$
so :
$$\lim_{ h\to - \infty }\frac{2^{h}+2^{-h}}{3^{h}+3^{-h}}=?\\\lim_{ h\to - \infty}\frac{(2^{-h})2^{2h}+1}{(3^{-h})3^{2h}+1}=?\\\lim_{ h\to - \infty }\frac{(2^{-h})2^{2h}+1}{(3^{-h})3^{2h}+1}=?$$
now :?
No comments:
Post a Comment