Thursday, February 15, 2018

calculus - the value of limlimitsnrightarrowinftyn2left(int10left(1+xnright)frac1n,dx1right)



This is exercise from my lecturer, for IMC preparation. I haven't found any idea.



Find the value of




lim



Thank you


Answer



By integration by parts,



\begin{align*} \int_{0}^{1} (1 + x^{n})^{\frac{1}{n}} \, dx &= \left[ -(1-x)(1+x^{n})^{\frac{1}{n}} \right]_{0}^{1} + \int_{0}^{1} (1-x)(1 + x^{n})^{\frac{1}{n}-1}x^{n-1} \, dx \\ &= 1 + \int_{0}^{1} (1-x) (1 + x^{n})^{\frac{1}{n}-1} x^{n-1} \, dx \end{align*}



so that we have



\begin{align*} n^{2} \left( \int_{0}^{1} (1 + x^{n})^{\frac{1}{n}} \, dx - 1 \right) &= \int_{0}^{1} n^{2} (1-x) (1 + x^{n})^{\frac{1}{n}-1} x^{n-1} \, dx. \end{align*}




Let a_{n} denote this quantity. By the substitution y = x^{n}, it follows that



\begin{align*} a_{n} &= \int_{0}^{1} n \left(1-y^{1/n}\right) (1 + y)^{\frac{1}{n}-1} \, dy = \int_{0}^{1} \int_{y}^{1} t^{\frac{1}{n}-1} (1 + y)^{\frac{1}{n}-1} \, dtdy \end{align*}



Since 0 \leq t (1 + y) \leq 2 and \int_{0}^{1} \int_{y}^{1} t^{-1}(1+y)^{-1} \, dtdy < \infty, an obvious application of the dominated convergence theorem shows that




\begin{align*} \lim_{n\to\infty} a_{n} = \int_{0}^{1} \int_{y}^{1} \frac{dtdy}{t(1+y)} &= - \int_{0}^{1} \frac{\log y}{1+y} \, dy \\ &= \sum_{m=1}^{\infty} (-1)^{m} \int_{0}^{1} y^{m-1} \log y \, dy = \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m^2} = \frac{\pi^2}{12}. \end{align*}


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...