Check the convergence of: ∞∑n=1nnenn!
Using the root test I get: lim now I'm left with showing that n > \sqrt[n]{n!} \ \ \forall n, can I just raise it to the power of n like so: \ n^n>n! ?
Alternatively, using limit arithmetic: \displaystyle\lim_{n \to\infty} \dfrac {n}{e\sqrt[n]{n!}}=\displaystyle\lim_{n \to\infty} \dfrac {1}{\large\frac e n \sqrt[n]{\frac {n!}{n^n}}}>1 (that's not very persuasive I know) so it diverges.
Edit: Root test won't work.
Note: Stirling, Taylor or integration are not allowed.
No comments:
Post a Comment