Tuesday, December 5, 2017

calculus - How to find the limit $limlimits_{ntoinfty}1/sqrt[n]{n}$ which is indeterminate on evaluation but is convergent?



When I evaluate the limit in the title above I get the following:



\begin{align}
\lim\limits_{n\to\infty}\dfrac{1}{\sqrt[n]{n}} &= \lim\limits_{n\to\infty} \dfrac{1}{n^{\frac{1}{n}}} = \dfrac{1}{\infty^0} \quad\Rightarrow\quad Indeterminate\\
&= \lim\limits_{n\to\infty}\left(\dfrac{1}{n}\right)^\frac{1}{n} = 0^0 \quad\Rightarrow\quad Indeterminate
\end{align}




But when I use a computer software (mathematica) to evaluate the same limit it says the limit is 1. What am I doing wrong?


Answer



Indeterminate forms can have values.



Note from L'Hospital's Rule that $\lim_{n\to \infty}\frac{\log(n)}{n}=\lim_{n\to \infty}\frac{1/n}{1}=0$. Hence, we have



$$\begin{align}
\lim_{n\to \infty}\frac{1}{n^{1/n}}&=\lim_{n\to \infty}e^{-\frac1n \log(n)}\\\\
&e^{-\lim_{n\to \infty}\left(\frac1n \log(n)\right)}\\\\
&=e^0\\\\

&=1
\end{align}$$



as expected!


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...