Where f(x) is an even function,and also is a periodic functions,the period is π,and n,m∈N,and n+m is odd number.
When n+m is even, I already have a solution.But when n+m is odd, I don't know how to solve it.I'd appreciate it if someone could help me with it.
When n+m is even,my answer is as follows:
If f (x) is an even function, and the period is π,we have:
∫∞0f(x)sinnxxmdx=∫π20f(x)gm(x)sinnxdx(1)
n,m∈N,
Where the n+m is an even,and gm(x) in (1) is as follows:
gm(x)={(−1)m−1(m−1)!dm−1dxm−1(cscx),for n is odd and(−1)m−1(m−1)!dm−1dxm−1(cotx), for n is even .
——————————————————————————————————————————————————
Proof:
∫∞0f(x)sinnxxmdx=∞∑k=0∫(2k+1)π2kπf(x)(sinnxxm)dx+∞∑k=1∫kπ(2k−1)π2f(x)(sinnxxm)dx=∞∑k=0∫π20f(x+kπ)(sinn(x+kπ)(x+kπ)m)dx+∞∑k=1∫0−π2f(x+kπ)(sinn(x+kπ)(x+kπ)m)dx=∞∑k=0(−1)nk∫π20f(x)(sinnx(x+kπ)m)dx+∞∑k=1(−1)nk+n+m∫π20f(−x)(sinnx(x−kπ)m)dx=∫π20f(x)sinnx(1xm+∞∑k=1(−1)nk[1(x+kπ)m+(−1)n+m(x−kπ)m])dx=∫π20f(x)sinnxgm(x)dx
When n+m is an even,and we know by the Fourier series
cscx=1x+∞∑k=1(−1)k(1x+kπ+1x−kπ)
and
cotx=1x+∞∑k=1(1x+kπ+1x−kπ)
Take the m-1 order derivative,thus we obtain gm(x).
——————————————————————————————————————————————————
Example:
(1.)∫∞0sin3xxdx=∫π20sin2xg1(x)sinxdx=∫π20sin2x1sinxsinxdx=∫π20sin2xdx=π4
(2.)∫∞0(1+cos2x)sin2xx2dx=∫π20(1+cos2x)g2(x)sin2xdx=∫π20(1+cos2x)(−ddxcotx)sin2xdx=∫π20(1+cos2x)(1sin2x)sin2xdx=∫π20(1+cos2x)dx=π2+π4=3π4
(3.)∫∞01(1+cos2x)sin3xx3dx=∫π20sin3x(1+cos2x)g3(x)dx=∫π20sin3x(1+cos2x)(12d2dx2(cscx))dx=∫π20sin3x(1+cos2x)(1+cos2x)2sin3xdx=∫π2012dx=π4
No comments:
Post a Comment