Let $X$ and $Y$ be random random variables and let $A \in \mathcal{B}$. Prove that the function $Z$ defined by
$$Z(\omega)=\begin{cases}
X(\omega),& \text{ if } \omega \in A \\
Y(\omega),& \text{ if } \omega \in A^{c}
\end{cases}$$
is a random variable
Proof so far:
$$Z^{-1}((-\infty,a])=\{\omega:Z(\omega)\geq a\}=\{\omega: Z(\omega)\geq a, \omega \in A\}\cup\{\omega: Z(\omega)\leq a, \omega \in A^{c}\}=Y^{-1}[a,\infty) \cup X^{-1}([a,\infty))$$
So $Z$ is measurable
Answer
Let $X, Y$ be random variables in $(\Omega, \mathcal B, \mathbb P)$.
If $A \in \mathcal B$, then $1_A$ and $1_{A^C}$ are random variables.
Note that
$$Z = X1_A + Y1_{A^C}$$
Since sums or products of random variables in $(\Omega, \mathcal B, \mathbb P)$ are random variables in $(\Omega, \mathcal B, \mathbb P)$, $Z$ is a random variable in $(\Omega, \mathcal B, \mathbb P)$.
As for your proof, I think you should say:
$\forall a \in \mathbb R$
have $Z \ge a$ instead of $Z \le a$
$Z$ is $\mathcal B$-measurable
No comments:
Post a Comment