The question:
The number 561 factors as 3⋅11⋅17. First use Fermat's little theorem to prove that a^{561} \equiv a \pmod 3 \\ a^{561} \equiv a\pmod {11} \\ a^{561} \equiv a\pmod {17} for every value of a. Then explain why these three congruences imply that a^{561} \equiv a (\mod 561) for every value of a.
My attempt:
a^2 = \left\{ \begin{array}{c} 1 (\mod 3) \quad \text{if} \quad 3 \mid a\\ 0 (\mod 3) \quad \text{if} \quad 3 \nmid a\\ \end{array} \right. \\[3ex] a^{10} = \left\{ \begin{array}{c} 1 (\mod 11) \quad \text{if} \quad 11 \mid a\\ 0 (\mod 11) \quad \text{if} \quad 11 \nmid a\\ \end{array} \right. \\[3ex] a^{16} = \left\{ \begin{array}{c} 1 (\mod 17) \quad \text{if} \quad 17 \mid a\\ 0 (\mod 17) \quad \text{if} \quad 17 \nmid a\\ \end{array} \right.
I'm really not sure where to go from here. The fact that 561 = 3\cdot 11 \cdot 17 must fit in somehow, but beyond that I don't know.
No comments:
Post a Comment