is it true that ζ(s)= lima→0+ 1+∞∑m=1e−sma⌊e(m+1)a−ema⌋ my proof :
\begin{equation}F(z) = \zeta(-\ln z) = \sum_{n=1}^\infty z^{\ln n}\end{equation}
which is convergent for |z| < \frac{1}{e}. now I consider the functions :
\tilde{F}_a(z) = \sum_{n=1}^\infty z^{a \left\lfloor \textstyle \frac{\ln n}{a} \right\rfloor } = 1 + \sum_{m=0}^\infty z^{a n} \left\lfloor e^{a(m+1)} - e^{a m} \right\rfloor
because \displaystyle\lim_{ a \to 0^+} a \left\lfloor \textstyle \frac{\ln n}{a} \right\rfloor = \ln n, we get that :
\lim_{\scriptstyle a \to 0^+} \ \tilde{F}_a(z) = \sum_{n=1}^\infty z^{\ln n} = \zeta(-\ln z)
(details)
\displaystyle\sum_{m=0}^\infty z^{a m} \left\lfloor e^{a(m+1)} - e^{a m} \right\rfloor is also convergent for z < \frac{1}{e} because \displaystyle\sum_{m=0}^\infty (z^a e^a)^{m} is convergent for z < \frac{1}{e} and \displaystyle\sum_{m=0}^\infty z^{am} \left\{e^{a(m+1)} - e^{a m} \right\} is convergent for z < 1.
to justify \displaystyle\sum_{n=1}^\infty z^{a \left\lfloor \textstyle \frac{\ln n}{a} \right\rfloor } = 1 + \sum_{m=1}^\infty z^{a m} \left\lfloor e^{a(m+1)} - e^{a m} \right\rfloor : if \left\lfloor \frac{\ln n}{a} \right\rfloor = m \ne 0 then \displaystyle\frac{\ln n}{a} \in [m, m+1[ \implies n \in [ e^{am}, e^{a(m+1)}[ . how many different n's is that ? \left\lfloor e^{a(m+1)} - e^{am} \right\rfloor .
No comments:
Post a Comment