I enjoy making and solving new questions. I made the following question:
Let n be a positive integer. Let's consider the fractions formed as an where a is a positive integer. Starting multiplying as
1n×2n×3n×⋯,then stop it when the product is first over 1. Letting an be the last fraction you multiply, then find lim.
I'm going to write another form of the same question.
Defining a_n=\frac mn for m such that \frac{(m-1)!}{n^{m-1}}\le 1 \lt \frac{m!}{n^m},
then find \lim_{n\to \infty}a_n.
After my observation, I reached the following expectation:
My expectation: \lim_{n\to \infty}a_n=e.
I'm very interested in this value, but I'm facing difficulty. Then, here is my question.
Question: Could you show me how to solve the above question?
Answer
I've just been able to prove
\lim_{n\to\infty} a_n=e
by an easy way.
Let a_n=\frac mn. Here note that m depends on n. Then, by the definition of a_n, we get
\begin{align}\frac 1n\cdot\frac 2n\cdot\cdots\cdot\frac{m}{n}\gt 1\qquad(1)\end{align}
\begin{align}\frac 1n\cdot\frac 2n\cdot\cdots\cdot\frac{m-1}{n}\le 1\qquad(2)\end{align}
(1) gives us
1\cdot 2\cdot \cdots\cdot m\gt n^m.
This is equal to
\begin{align}\sum_{k=1}^m\log k\gt m\log n\qquad(3)\end{align}
Now, noting that y=\log x monotonically increases for x\gt 0, we get
\begin{align}\sum_{k=1}^m\log k\le\int_{1}^{m+1}\log x dx=[x\log x-x]_{1}^{m+1}=(m+1)\log (m+1)-m\qquad(4)\end{align}
(3)(4) gives us
m\log n\lt (m+1)\log (m+1)-m\iff m-\log(m+1)\lt m\log (m+1)-m\log n=m\log \frac{m+1}{n}=m\left\{\log\frac mn+\log \left(1+\frac 1m\right)\right\}
Since m\gt0, dividing the both sides by m gives us
\begin{align}1-\frac{\log (m+1)}{m}-\log \left(1+\frac 1m\right)\lt\log\frac mn\qquad(5)\end{align}
On the other hand, (2) gives us
1\cdot 2\cdot\cdots\cdot (m-1)\le n^{m-1}.
This is equal to
\begin{align}\sum_{k=1}^{m-1}\log k\le (m-1)\log n\qquad(6)\end{align}
Hence, we get
\begin{align}\sum_{k=1}^{m-1}\log k\ge\int_{1}^{m-1}\log x dx=[x\log x-x]_{1}^{m-1}=(m-1)\log (m-1)-m+2\qquad(7)\end{align}
(6)(7) gives us
(m-1)\log(m-1)-m+2\le (m-1)\log n
\iff (m-1)\log\frac{m-1}{n}\le m-2
\iff (m-1)\left\{\log\frac mn+\log\left(1-\frac 1m\right)\right\}\le m-2
Since m\gt 1, dividing the both sides by m-1 gives us
\begin{align}\log\frac mn\le\frac{m-2}{m-1}-\log\left(1-\frac 1m\right)\qquad(8)\end{align}
(5)(8) gives us
\begin{align}1-\frac{\log (m+1)}{m}-\log\left(1+\frac 1m\right)\lt\log\frac mn\le\frac{m-2}{m-1}-\log\left(1-\frac 1m\right)\qquad(9)\end{align}
Here, since \frac 1n\cdot\frac 2n\cdot\cdots\cdot\frac{n-1}{n}\lt 1, we know m\ge n. Hence, m\to\infty when n\to\infty.
Hence, when n\to\infty, we know
1-\log\frac{\log (m+1)}{m}-\log\left(1+\frac 1m\right)\to 1,
\frac{m-2}{m-1}-\log\left(1-\frac 1m\right)\to 1.
Note that here we use
\lim_{m\to\infty}\frac{\log (m+1)}{m}=0.
Hence, (9) gives us \lim_{n\to\infty}\log\frac mn=1.
This leads \lim_{n\to\infty} a_n=\lim_{n\to\infty}\frac mn=e.
We now know that the proof is completed.
No comments:
Post a Comment