Tuesday, December 19, 2017

integration - Improper integral $int_{0}^{infty}left(frac{1}{sqrt{x^2+4}}-frac{k}{x+2}right)text dx$




Given improper integral $$\int \limits_{0}^{\infty}\left(\frac{1}{\sqrt{x^2+4}}-\frac{k}{x+2}\right)\text dx \, ,$$
there exists $k$ that makes this integral convergent.
Find its integration value.




Choices are $\ln 2$, $\ln 3$, $\ln 4$, and $\ln 5$.







I've written every information from the problem.
Yet I'm not sure whether I should find the integration value from the given integral or $k$.



What I've tried so far is,
$\int_{0}^{\infty} \frac{1}{\sqrt{x^2+4}} \, \text dx= \left[\sinh^{-1}{\frac{x}{2}}\right]_{0}^{\infty}$



How should I proceed?


Answer



We have that for $x\to \infty$



$$\frac{1}{\sqrt{x^2+4}}=\frac1x(1+4/x^2)^{-1/2}\sim \frac1x-\frac2{x^3}$$




and



$$\frac k {x+2}\sim \frac k x$$



therefore in order to have convergence we need $k=1$ in such way that the $\frac1x$ term cancels out.



Then we need to solve and evaluate



$$\int_{0}^{\infty}\left (\frac{1}{\sqrt{x^2+4}}-\frac{1}{x+2}\right)\text dx=\left[\sinh^{-1}\frac x 2 -\log (x+2)\right]_{0}^{\infty}$$




and to evaluate the value at $\infty$ recall that



$$\sinh^{-1}\frac x 2=\log \left(\frac x 2 + \sqrt{\frac{x^2}{4}+1}\right) \sim \log x$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...