Thursday, December 14, 2017

sequences and series - Prove elementarily that sqrt[n+1](n+1)!sqrt[n]n! is strictly decreasing



Prove without calculus that the sequence
Ln=n+1(n+1)!nn!, nN
is strictly decreasing.



Answer



Let n=(n!)1/n. Clearly for all nN, n>0. The question is equivalent to showing that
n+2n+1+nn+1<2
Let
xn=logn+1n=1n+1(log(n+1)1nnk=1log(k))
The inequality (1) now reads:
2>exp(xn+1)+exp(xn)=2exp(xn+1xn2)cosh(xn+1+xn2)
We can rewrite xn a little:
xn=1n+1(log(n+1n)1nnk=1log(kn)denote this as sn)



Note that, with some straightforward algebra
xn+1xn2=12(n+2)log(1+1n+1)1(n+1)(n+2)(log(1+1n)sn)

xn+1+xn2=12(n+2)log(1+2n)+12(n+2)log(1+1n)1n+2sn



Bounding sn



Using summation by parts:
nk=1(ak+1ak)bk=an+1bna1b1n1k=1ak+1(bk+1bk)

with ak=kn and bk=logkn, we find
sn=0logn1nn1k=1k+1nlog(1+1k)=n1n+12log(n)n1nn1k=1((k+12)log(1+1k)1)
Using elementary integral 10dxk+x=log(1+1k) we find
(k+12)log(1+1k)1=10(k+12k+x1)dx=1012x2(k+x)dx
changing variables x1x and averaging with the original:

(k+12)log(1+1k)1=10(x12)2(k+x)(k+1x)dx=1212u2(k+12)2u2du
Since
1212u2(k+12)2du<1212u2(k+12)2u2du<1212u2(k+12)214du
We have
1121(k+12)2<(k+12)log(1+1k)1<112k(k+1)=112k112(k+1)
Since
\frac{1}{12} \frac{1}{\left(k+\frac{1}{2}\right)^2} > \frac{1}{12} \frac{1}{\left(k+\frac{1}{2}\right) \left(k+\frac{3}{2}\right)} = \frac{1}{12} \frac{1}{k+\frac{1}{2}} - \frac{1}{12} \frac{1}{k+\frac{3}{2}}



We thus establish that
\sum_{k=1}^{n-1} \left( \left(k + \frac{1}{2} \right) \log\left(1+\frac{1}{k}\right) - 1 \right) < \sum_{k=1}^{n-1} \left( \frac{1}{12 k} - \frac{1}{12 (k+1)} \right) = \frac{1}{12} - \frac{1}{12 n} < \frac{1}{12}
and
\sum_{k=1}^{n-1} \left( \left(k + \frac{1}{2} \right) \log\left(1+\frac{1}{k}\right) - 1 \right) > \sum_{k=1}^{n-1} \left( \frac{1}{12 \left(k+\frac{1}{2}\right)} -\frac{1}{12 \left(k+\frac{3}{2}\right)} \right) = \frac{1}{18} - \frac{1}{6 (2n+1)} = \frac{1}{9} \frac{n-1}{2n+1}
The argument above suggests that \sum_{k=1}^{n-1} \left( \left(k + \frac{1}{2} \right) \log\left(1+\frac{1}{k}\right) - 1 \right) converges to a number c such that \frac{1}{18} < c < \frac{1}{12}. Thus
-\frac{n-1}{n} + \frac{\log(n)}{2n} - \frac{1}{12 n} < s_n < -\frac{n-1}{n} + \frac{\log(n)}{2n} - \frac{1}{9} \frac{n-1}{n (2n+1)} \tag{5}

Implying that s_n converges to -1 and that, for large n
s_n = -1 + \frac{\log(n)}{2n} + \mathcal{O}\left(n^{-1}\right)



Using these bounds



We therefore conclude that \frac{x_{n+1}-x_n}{2} = \mathcal{O}\left(n^{-2}\right) and \frac{x_{n+1}+x_n}{2} = \mathcal{O}\left(n^{-1}\right).
Since both the mean and difference are arbitrarily small for large enough n:
\begin{eqnarray} 2 \exp\left(\frac{x_{n+1}-x_n}{2}\right) \cosh \left(\frac{x_{n+1}+x_n}{2}\right) &<& 2 \frac{1}{1-\frac{x_{n+1}-x_n}{2}} \frac{1}{1-\frac{1}{2} \left(\frac{x_{n+1}+x_n}{2}\right)^2} \\ &=& 2 + 2\left(\frac{x_{n+1}-x_n}{2}\right) + \left(\frac{x_{n+1}+x_n}{2}\right)^2 + \mathcal{o}\left(n^{-3}\right) \\ &=& 2 - \frac{1}{2 n^3} + \mathcal{o}\left(n^{-3}\right) \end{eqnarray}



Thus, at least for n large enough the sequence L_n is decreasing.



This painstaking exercise just makes one appreciate the power of calculus.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...