Prove without calculus that the sequence
Ln=n+1√(n+1)!−n√n!, n∈N
is strictly decreasing.
Answer
Let ℓn=(n!)1/n. Clearly for all n∈N, ℓn>0. The question is equivalent to showing that
ℓn+2ℓn+1+ℓnℓn+1<2
Let
xn=logℓn+1ℓn=1n+1(log(n+1)−1nn∑k=1log(k))
The inequality (1) now reads:
2>exp(xn+1)+exp(−xn)=2exp(xn+1−xn2)cosh(xn+1+xn2)
We can rewrite xn a little:
xn=1n+1(log(n+1n)−1nn∑k=1log(kn)⏟denote this as sn)
Note that, with some straightforward algebra
xn+1−xn2=12(n+2)log(1+1n+1)−1(n+1)(n+2)(log(1+1n)−sn)
xn+1+xn2=12(n+2)log(1+2n)+12(n+2)log(1+1n)−1n+2sn
Bounding sn
Using summation by parts:
n∑k=1(ak+1−ak)bk=an+1bn−a1b1−n−1∑k=1ak+1(bk+1−bk)
with ak=kn and bk=logkn, we find
sn=0−logn−1n−n−1∑k=1k+1nlog(1+1k)=−n−1n+12log(n)n−1nn−1∑k=1((k+12)log(1+1k)−1)
Using elementary integral ∫10dxk+x=log(1+1k) we find
(k+12)log(1+1k)−1=∫10(k+12k+x−1)dx=∫101−2x2(k+x)dx
changing variables x→1−x and averaging with the original:
(k+12)log(1+1k)−1=∫10(x−12)2(k+x)(k+1−x)dx=∫12−12u2(k+12)2−u2du
Since
∫12−12u2(k+12)2du<∫12−12u2(k+12)2−u2du<∫12−12u2(k+12)2−14du
We have
1121(k+12)2<(k+12)log(1+1k)−1<112k(k+1)=112k−112(k+1)
Since
\frac{1}{12} \frac{1}{\left(k+\frac{1}{2}\right)^2} > \frac{1}{12} \frac{1}{\left(k+\frac{1}{2}\right) \left(k+\frac{3}{2}\right)} = \frac{1}{12} \frac{1}{k+\frac{1}{2}} - \frac{1}{12} \frac{1}{k+\frac{3}{2}}
We thus establish that
\sum_{k=1}^{n-1} \left( \left(k + \frac{1}{2} \right) \log\left(1+\frac{1}{k}\right) - 1 \right) < \sum_{k=1}^{n-1} \left( \frac{1}{12 k} - \frac{1}{12 (k+1)} \right) = \frac{1}{12} - \frac{1}{12 n} < \frac{1}{12}
and
\sum_{k=1}^{n-1} \left( \left(k + \frac{1}{2} \right) \log\left(1+\frac{1}{k}\right) - 1 \right) > \sum_{k=1}^{n-1} \left( \frac{1}{12 \left(k+\frac{1}{2}\right)} -\frac{1}{12 \left(k+\frac{3}{2}\right)} \right) = \frac{1}{18} - \frac{1}{6 (2n+1)} = \frac{1}{9} \frac{n-1}{2n+1}
The argument above suggests that \sum_{k=1}^{n-1} \left( \left(k + \frac{1}{2} \right) \log\left(1+\frac{1}{k}\right) - 1 \right) converges to a number c such that \frac{1}{18} < c < \frac{1}{12}. Thus
-\frac{n-1}{n} + \frac{\log(n)}{2n} - \frac{1}{12 n} < s_n < -\frac{n-1}{n} + \frac{\log(n)}{2n} - \frac{1}{9} \frac{n-1}{n (2n+1)} \tag{5}
Implying that s_n converges to -1 and that, for large n
s_n = -1 + \frac{\log(n)}{2n} + \mathcal{O}\left(n^{-1}\right)
Using these bounds
We therefore conclude that \frac{x_{n+1}-x_n}{2} = \mathcal{O}\left(n^{-2}\right) and \frac{x_{n+1}+x_n}{2} = \mathcal{O}\left(n^{-1}\right).
Since both the mean and difference are arbitrarily small for large enough n:
\begin{eqnarray} 2 \exp\left(\frac{x_{n+1}-x_n}{2}\right) \cosh \left(\frac{x_{n+1}+x_n}{2}\right) &<& 2 \frac{1}{1-\frac{x_{n+1}-x_n}{2}} \frac{1}{1-\frac{1}{2} \left(\frac{x_{n+1}+x_n}{2}\right)^2} \\ &=& 2 + 2\left(\frac{x_{n+1}-x_n}{2}\right) + \left(\frac{x_{n+1}+x_n}{2}\right)^2 + \mathcal{o}\left(n^{-3}\right) \\ &=& 2 - \frac{1}{2 n^3} + \mathcal{o}\left(n^{-3}\right) \end{eqnarray}
Thus, at least for n large enough the sequence L_n is decreasing.
This painstaking exercise just makes one appreciate the power of calculus.
No comments:
Post a Comment