Monday, June 13, 2016

integration - Closed form for $ int_0^infty {frac{{{x^n}}}{{1 + {x^m}}}dx }$


I've been looking at


$$\int\limits_0^\infty {\frac{{{x^n}}}{{1 + {x^m}}}dx }$$


It seems that it always evaluates in terms of $\sin X$ and $\pi$, where $X$ is to be determined. For example:


$$\displaystyle \int\limits_0^\infty {\frac{{{x^1}}}{{1 + {x^3}}}dx = } \frac{\pi }{3}\frac{1}{{\sin \frac{\pi }{3}}} = \frac{{2\pi }}{{3\sqrt 3 }}$$


$$\int\limits_0^\infty {\frac{{{x^1}}}{{1 + {x^4}}}dx = } \frac{\pi }{4}$$


$$\int\limits_0^\infty {\frac{{{x^2}}}{{1 + {x^5}}}dx = } \frac{\pi }{5}\frac{1}{{\sin \frac{{2\pi }}{5}}}$$



So I guess there must be a closed form - the use of $\Gamma(x)\Gamma(1-x)$ first comess to my mind because of the $\dfrac{{\pi x}}{{\sin \pi x}}$ appearing. Note that the arguments are always the ratio of the exponents, like $\dfrac{1}{4}$, $\dfrac{1}{3}$ and $\dfrac{2}{5}$. Is there any way of finding it? I'll work on it and update with any ideas.



UPDATE:


The integral reduces to finding


$$\int\limits_{ - \infty }^\infty {\frac{{{e^{a t}}}}{{{e^t} + 1}}dt} $$


With $a =\dfrac{n+1}{m}$ which converges only if


$$0 < a < 1$$


Using series I find the solution is



$$\sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} $$




Can this be put it terms of the Digamma Function or something of the sort?


Answer



I would like to make a supplementary calculation on BR's answer.


Let us first assume that $0 < \mu < \nu$ so that the integral $$ \int_{0}^{\infty} \frac{x^{\mu-1}}{1+x^{\nu}} \; dx $$ converges absolutely. By the substitution $x = \tan^{2/\nu} \theta$, we have $$ \frac{dx}{1+x^{\nu}} = \frac{2}{\nu} \tan^{(2/\nu)-1} \theta \; d\theta. $$ Thus $$ \begin{align*} \int_{0}^{\infty} \frac{x^{\mu-1}}{1+x^{\nu}} \; dx & = \int_{0}^{\frac{\pi}{2}} \frac{2}{\nu} \tan^{\frac{2\mu}{\nu}-1} \theta \; d\theta \\ & = \frac{1}{\nu} \beta \left( \frac{\mu}{\nu}, 1 - \frac{\mu}{\nu} \right) \\ & = \frac{1}{\nu} \Gamma \left( \frac{\mu}{\nu} \right) \Gamma \left( 1 - \frac{\mu}{\nu} \right) \\ & = \frac{\pi}{\nu} \csc \left( \frac{\pi \mu}{\nu} \right), \end{align*} $$ where the last equality follows from Euler reflexion formula.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...