Sunday, June 19, 2016

Calculate the limit of a real sequence



I need to show that the following real sequence is convergent. Let r,l>0 be constant then the sequence (an)nN is defined by
an=sin1(r2n)1+n2l2.




Furthermore, I also need to determine the limit (which is r2l).



Thank you in advance for your answers and ideas.


Answer



Since lim so




\lim _{ n\rightarrow \infty }{ \arcsin { \left( \frac { r }{ 2n } \right) } \sqrt { 1+n^{ 2 }l^{ 2 } } } =\lim _{ n\rightarrow \infty }{ \frac { \arcsin { \left( \frac { r }{ 2n } \right) } }{ \frac { r }{ 2n } } \cdot \frac { r }{ 2n } \cdot \sqrt { 1+n^{ 2 }l^{ 2 } } } =\\ =\lim _{ n\rightarrow \infty }{ \frac { r }{ 2n } \cdot n\cdot \sqrt { \frac { 1 }{ { n }^{ 2 } } +l^{ 2 } } } =\color{red}{\frac { lr }{ 2 }}



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...