I need to show that the following real sequence is convergent. Let r,l>0 be constant then the sequence (an)n∈N is defined by
an=sin−1(r2n)√1+n2l2.
Furthermore, I also need to determine the limit (which is r2l).
Thank you in advance for your answers and ideas.
Answer
Since lim so
\lim _{ n\rightarrow \infty }{ \arcsin { \left( \frac { r }{ 2n } \right) } \sqrt { 1+n^{ 2 }l^{ 2 } } } =\lim _{ n\rightarrow \infty }{ \frac { \arcsin { \left( \frac { r }{ 2n } \right) } }{ \frac { r }{ 2n } } \cdot \frac { r }{ 2n } \cdot \sqrt { 1+n^{ 2 }l^{ 2 } } } =\\ =\lim _{ n\rightarrow \infty }{ \frac { r }{ 2n } \cdot n\cdot \sqrt { \frac { 1 }{ { n }^{ 2 } } +l^{ 2 } } } =\color{red}{\frac { lr }{ 2 }}
No comments:
Post a Comment