I would like to show using contour integrals that ∫2π0dt(1+cos(u)cos(t))2=2πsin3(u) for any u∈(0,π2).
I first notice that cos(u)∈(0,1), so that cos(u)cos(t)≠−1.
If I introduce the complex variable z=cos(t)+isin(t), then z−1=cos(t)−isin(t) and cos(t)=z+z−12. Now, dzdt=−sin(t)+icos(t)=iz, so dt=dziz. Now, I want to use the definition of a integral over a curve, i.e. ∫γf(z)dz=∫baf(γ(t))γ′(t)dt, where γ:[a,b]→U⊂C is a closed curve. But I have difficulites to match the expressions and to continue calculating the integral.
Answer
Let I(u):=∫2π0dt(1+cos(u)cos(t))2.
Note that I(π2)=2π=I(3π2), which agrees with the formula I(u)=2π|sin3(u)| for u∈{π2,3π2}. From now on, we assume that u∈(0,2π)∖{π2,3π2}.
Let z:=cos(t)+isin(t); then,
I(u)=∮γ4zi(z2+2sec(u)z+1)2dz,
where γ is the positively oriented unit circle {w∈C||w|=1}. That is,
I(u)=4icos2(u)∮γz(z+sec(u)−tan(u))2(z+sec(u)+tan(u))2dz.
Write u+:=−sec(u)+tan(u) and u−:=−sec(u)−tan(u). Define
fu(z):=z(z2+2sec(u)z+1)2=z(z+sec(u)−tan(u))2(z+sec(u)+tan(u))2.
You can write (z−u+)2fu(z)=z(z−u−)2
so that
ddz|z=u+((z−u+)2fu(z))=−u++u−(u+−u−)3=+cos2(u)4sin3(u).
Similarly, you can write (z−u−)2fu(z)=z(z−u+)2
so that
ddz|z=u−((z−u−)2fu(z))=−u−+u+(u−−u+)3=−cos2(u)4sin3(u).
If u∈(0,π2), then $u_-<-1
If u∈(π2,π), then $0
If u∈(π,3π2), then $0
If u∈(3π2,2π), then $u_+<-1
In all cases,
I(u)=2π|sin3(u)|=2π|csc3(u)| for all u∈R∖πZ.
In general,
∫2π0dt(1+rsin(t))2=∫2π0dt(1+rcos(t))2=2π(√1−r2)3
for every r∈C∖((−∞,−1]∪[+1,+∞)). Similarly,
∫2π0dt1+rsin(t)=∫2π0dt1+rcos(t)=2π√1−r2
for every r∈C∖((−∞,−1]∪[+1,+∞)). Here, we pick the branch of √1−r2 in such a way that |1−√1−r2|<|r| (i.e., the branch cuts are (−∞,−1] and [+1,+∞)). That is, for r∈C∖((−∞,−1]∪[+1,+∞)), the complex number √1−r2 is in the open half-plane containing complex numbers with positive real parts; in short, Re(√1−r2)>0 for every r∈C∖((−∞,−1]∪[+1,+∞)).
No comments:
Post a Comment