Tuesday, April 5, 2016

integration - Use contour integral to show int2pi0fracmathrmdt(1+cos(u)cos(t))2=frac2pisin3(u) for uin(0,fracpi2)



I would like to show using contour integrals that 2π0dt(1+cos(u)cos(t))2=2πsin3(u) for any u(0,π2).



I first notice that cos(u)(0,1), so that cos(u)cos(t)1.
If I introduce the complex variable z=cos(t)+isin(t), then z1=cos(t)isin(t) and cos(t)=z+z12. Now, dzdt=sin(t)+icos(t)=iz, so dt=dziz. Now, I want to use the definition of a integral over a curve, i.e. γf(z)dz=baf(γ(t))γ(t)dt, where γ:[a,b]UC is a closed curve. But I have difficulites to match the expressions and to continue calculating the integral.


Answer



Let I(u):=2π0dt(1+cos(u)cos(t))2.

Note that I(π2)=2π=I(3π2), which agrees with the formula I(u)=2π|sin3(u)| for u{π2,3π2}. From now on, we assume that u(0,2π){π2,3π2}.



Let z:=cos(t)+isin(t); then,
I(u)=γ4zi(z2+2sec(u)z+1)2dz,
where γ is the positively oriented unit circle {wC||w|=1}. That is,
I(u)=4icos2(u)γz(z+sec(u)tan(u))2(z+sec(u)+tan(u))2dz.
Write u+:=sec(u)+tan(u) and u:=sec(u)tan(u). Define
fu(z):=z(z2+2sec(u)z+1)2=z(z+sec(u)tan(u))2(z+sec(u)+tan(u))2.
You can write (zu+)2fu(z)=z(zu)2
so that
ddz|z=u+((zu+)2fu(z))=u++u(u+u)3=+cos2(u)4sin3(u).

Similarly, you can write (zu)2fu(z)=z(zu+)2
so that
ddz|z=u((zu)2fu(z))=u+u+(uu+)3=cos2(u)4sin3(u).



If u(0,π2), then $u_-<-1I(u)=4icos2(u)(2πiResz=u+(f(z)))=8πcos2(u)(+cos2(u)4sin3(u))=+2πsin3(u).
If u(π2,π), then $0I(u)=4icos2(u)(2πiResz=u+(f(z)))=8πcos2(u)(+cos2(u)4sin3(u))=+2πsin3(u).
If u(π,3π2), then $0I(u)=4icos2(u)(2πiResz=u(f(z)))=8πcos2(u)(cos2(u)4sin3(u))=2πsin3(u).

If u(3π2,2π), then $u_+<-1I(u)=4icos2(u)(2πiResz=u+(f(z)))=8πcos2(u)(cos2(u)4sin3(u))=2πsin3(u).
In all cases,
I(u)=2π|sin3(u)|=2π|csc3(u)| for all uRπZ.






In general,
2π0dt(1+rsin(t))2=2π0dt(1+rcos(t))2=2π(1r2)3
for every rC((,1][+1,+)). Similarly,

2π0dt1+rsin(t)=2π0dt1+rcos(t)=2π1r2
for every rC((,1][+1,+)). Here, we pick the branch of 1r2 in such a way that |11r2|<|r| (i.e., the branch cuts are (,1] and [+1,+)). That is, for rC((,1][+1,+)), the complex number 1r2 is in the open half-plane containing complex numbers with positive real parts; in short, Re(1r2)>0 for every rC((,1][+1,+)).


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...