I have solved the problem in just 2 lines using a theorem which asserts that
"Let ${u_n}$ be a real sequence such that $u_n > 0 \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \ell$ (finite of infinite). Then $\lim_{n \to \infty} (u_n)^{1 \over n} =\ell$ "
To prove the aforesaid limit, I fix $u_n={n^n \over n!}$. Then $u_n>0 \forall n \in \mathbb{N}$ and $\lim_{n \to \infty}\frac{u_{n+1}}{u_n}= \lim_{n \to \infty}(1+{1 \over n})^n=e$.
Then it follows from the above theorem that $\lim_{n \to \infty} (u_n)^{1 \over n} =e$ i.e. $ \lim_{n \to \infty} \frac{n}{(n!)^\frac{1}{n}} = e $. (Proved)
But I am trying to prove it without using the theorem. I am trying to get a generic proof.
Can anyone provide a proper wayout for this?
Thanks for your help in advance.
Answer
EDIT: As pointed out in the comments, even though the final inequality is correct, it is insufficient since $(n+1)^{1/n} \to 1$ as $n \to \infty$. The lower bound can be obtained as shown in @adfriedman's answer.
Here's my take on it:
Whenever $n \geq 3$, we have
$$ n^n \geq (n+1)!, $$
and thus
$$ n^n \geq (n+1)n! \quad \Leftrightarrow \quad \frac{n}{n!^{\frac{1}{n}}} \geq (n+1)^{\frac{1}{n}}. $$
On the other hand, the Taylor expansion of $e^n$ gives
$$ \frac{n^n}{n!} \leq \sum_{k=0}^{\infty} \frac{n^k}{k!} = e^n \quad \Leftrightarrow \quad \frac{n}{n!^{\frac{1}{n}}} \leq e. $$
So,
$$ (n+1)^{\frac{1}{n}} \leq \frac{n}{n!^{\frac{1}{n}}} \leq e. $$
Apply the Squeeze Theorem.
No comments:
Post a Comment