Evaluate ∫∞0xα(1+x2)2dx, −1<α<3.
May I verify if my solution is correct? Thank you.
Consider γ1:={x:−1r≤x≤−r}, γ2:={reit:π≤t≤0},γ3:{x:r≤x≤1r}, γ3:={1reit:0≤t≤π}, where $0
Let f(z)=zα(1+z2)2.
∫γ1f(z)dz=∫−r−1/rf(z)dz=[z=−w,w>0 dz=−dw]=−∫r1/r(−w)α(1+(−w2))2dw =(eπi)α∫1/rrwα(1+w2)2dw.
∫γ3f(z)dz=∫1/rrxα(1+x2)2dx
|∫γ4f(z)dz|→0, r→0, since −1<α<3. Similarly, |∫γ2f(z)dz|→0, r→0
i is a double pole of f⟹2πiRes(f,i)=2πilim
By Cauchy Residue Thm, \begin{align}\dfrac{\pi(1-\alpha)i\alpha}{2}= (1+e^{\pi i \alpha})\int^{1/r}_{r}{\dfrac{f(x)}{(1+x^2)^2}dx}+\int_{\gamma_{2} \cup \gamma_{3}}f(z)dz \end{align}.
Letting r \to 0, we have : \begin{align} \int^{\infty}_{0} \dfrac{x^\alpha}{(1+x^2)^2}\end{align}dx=\dfrac{\dfrac{\pi(1-\alpha)i\alpha}{2}}{(1+e^{\pi i \alpha})}=\dfrac{\pi(1-\alpha)}{4\text{cos}(\pi \alpha/2)}
No comments:
Post a Comment