Tuesday, April 5, 2016

complex analysis - Evaluate $intlimits^{infty}_{0} frac{x^alpha}{(1+x^2)^2}dx, -1 < alpha

Evaluate 0xα(1+x2)2dx, 1<α<3.


May I verify if my solution is correct? Thank you.


Consider γ1:={x:1rxr}, γ2:={reit:πt0},γ3:{x:rx1r}, γ3:={1reit:0tπ}, where $0


Let f(z)=zα(1+z2)2.


γ1f(z)dz=r1/rf(z)dz=[z=w,w>0 dz=dw]=r1/r(w)α(1+(w2))2dw =(eπi)α1/rrwα(1+w2)2dw.


γ3f(z)dz=1/rrxα(1+x2)2dx


|γ4f(z)dz|0, r0, since 1<α<3. Similarly, |γ2f(z)dz|0, r0



i is a double pole of f2πiRes(f,i)=2πilim


By Cauchy Residue Thm, \begin{align}\dfrac{\pi(1-\alpha)i\alpha}{2}= (1+e^{\pi i \alpha})\int^{1/r}_{r}{\dfrac{f(x)}{(1+x^2)^2}dx}+\int_{\gamma_{2} \cup \gamma_{3}}f(z)dz \end{align}.


Letting r \to 0, we have : \begin{align} \int^{\infty}_{0} \dfrac{x^\alpha}{(1+x^2)^2}\end{align}dx=\dfrac{\dfrac{\pi(1-\alpha)i\alpha}{2}}{(1+e^{\pi i \alpha})}=\dfrac{\pi(1-\alpha)}{4\text{cos}(\pi \alpha/2)}

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...