Wednesday, April 20, 2016

calculus - Double integral with two variables in the exponential: intp0iinti0nftyeibxcosthetax/ax2sintheta dx dtheta.



I'm having trouble with the substitutions in the following integral:





π00eibxcosθx/ax2sinθ dx dθ




My attempt:



Let u=cosθ then du=sinθ dθ



Then we have



1π00eibxux/ax2 du dx




How do I separate the u out of the exponential to integrate separately with respect to u and then x? Am I doing the wrong substitution?


Answer



π00eibxcosθ1axx2sinθ dx dθ=110eibxuxax2 dx du=0(11eibxuxax2 du) du=0x2exa(eibxibxeibxibx) du=2b0xe1axsinbxdx=2bL(xsinbx)|s=1a=2b21a b(1a2+b2)2=4a3(1+a2b2)2


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...