I'm having trouble with the substitutions in the following integral:
∫π0∫∞0e−ibxcosθ−x/ax2sinθ dx dθ
My attempt:
Let u=cosθ then du=−sinθ dθ
Then we have
−1∫π0∫∞0e−ibxu−x/ax2 du dx
How do I separate the u out of the exponential to integrate separately with respect to u and then x? Am I doing the wrong substitution?
Answer
∫π0∫∞0e−ibxcosθ−1axx2sinθ dx dθ=∫1−1∫∞0e−ibxu−xax2 dx du=∫∞0(∫1−1e−ibxu−xax2 du) du=∫∞0x2e−xa(e−ibxibx−e−ibxibx) du=2b∫∞0xe−1axsinbxdx=2bL(xsinbx)|s=1a=2b21a b(1a2+b2)2=4a3(1+a2b2)2
No comments:
Post a Comment