How do we prove that the endomorphism of the multiplicative group of positive real numbers is unique (up to a complex variable)!? meaning: how do we prove that it has the following - and only the following - form:
$$f(x)=x^{s}\;\;\;\;(x\in \mathbb{R}^{+} \;\;,s\in\mathbb{C})$$
Friday, April 1, 2016
abstract algebra - Uniqueness of the endomorphism of the multiplicative group of positive real numbers
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
No comments:
Post a Comment