How can I show that
$\sum_{k=1}^{\infty}ka^k(1-a) = \frac{a}{1-a}$
I tried to integrate the series, but that did not help me.
Answer
$S = a(1-a) + 2a^2(1-a) + 3a^3(1-a)+\cdots + \infty \tag1$
$aS = a^2(1-a) + 2a^3(1-a) + 3a^4(1-a) +\cdots +\infty \tag 2$
$(1)-(2)$ gives
$$(1-a)S = a(1-a) + a^2(1-a) + a^3(1-a) + \cdots+\infty$$
$$(1-a)S = a(1-a) \left[1+a+a^2+a^3+\cdots\right]$$
$$(1-a)S = a(1-a).\frac{1}{1-a} = a$$
$$ S = \frac{a}{1-a}$$
No comments:
Post a Comment