Wednesday, March 2, 2016

Sum up the series: $sum_{k=1}^{infty}ka^k(1-a) = frac{a}{1-a}$




How can I show that





$\sum_{k=1}^{\infty}ka^k(1-a) = \frac{a}{1-a}$




I tried to integrate the series, but that did not help me.


Answer



$S = a(1-a) + 2a^2(1-a) + 3a^3(1-a)+\cdots + \infty \tag1$



$aS = a^2(1-a) + 2a^3(1-a) + 3a^4(1-a) +\cdots +\infty \tag 2$




$(1)-(2)$ gives



$$(1-a)S = a(1-a) + a^2(1-a) + a^3(1-a) + \cdots+\infty$$



$$(1-a)S = a(1-a) \left[1+a+a^2+a^3+\cdots\right]$$



$$(1-a)S = a(1-a).\frac{1}{1-a} = a$$



$$ S = \frac{a}{1-a}$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...