How can I show that
∑∞k=1kak(1−a)=a1−a
I tried to integrate the series, but that did not help me.
Answer
S=a(1−a)+2a2(1−a)+3a3(1−a)+⋯+∞
aS=a2(1−a)+2a3(1−a)+3a4(1−a)+⋯+∞
(1)−(2) gives
(1−a)S=a(1−a)+a2(1−a)+a3(1−a)+⋯+∞
(1−a)S=a(1−a)[1+a+a2+a3+⋯]
(1−a)S=a(1−a).11−a=a
S=a1−a
No comments:
Post a Comment