Problem:
How to find the following limit :
limn→∞[(1+1n)(1+2n)⋯(1+nn)]1n
is equal to
(a) 4e
(b) 3e
(c) 1e
(d) e
Please suggest how to proceed in this problem thanks...
Answer
log(limn→∞[(1+1n)(1+2n)⋯(1+nn)]1n)=limn→∞log(1+1n)+log(1+2n)+⋯+log(1+nn)n=∫21log(1+x)dx=[xlog(x)−x]x=2x=1=2log(2)−1
This yields the solution e2log(2)−1=4/e.
No comments:
Post a Comment