How to find the following limit without using l'Hospital rule
limx→0tanx−sinxx3
Using l'Hospital I got 12. Thanks for your help.
Answer
Hints:
tanx−sinxx3=sinx−sinxcosxx3cosx=1cosxsinxx1−cosxx2
Now, use arithmetic of limits and also
1−cosxx2=sin2xx2(1+cosx)=(sinxx)211+cosx
No comments:
Post a Comment