Wednesday, July 10, 2019

Convergence of an integral $int_1^{+infty} frac{1}{xsqrt[3]{x^2+1}}mathrm dx$



Convergence of an integral $\int_1^{+\infty} \frac{1}{x\sqrt[3]{x^2+1}}\mathrm dx$



$\int_1^{+\infty} \frac{1}{x\sqrt[3]{x^2+1}}\mathrm dx=\lim\limits_{t\to\infty}\int_1^{t} \frac{1}{x\sqrt[3]{x^2+1}}\mathrm dx$



Partial integration can't solve the integral $\int \frac{1}{x\sqrt[3]{x^2+1}}\mathrm dx$.



What substitution (or other methods) would you suggest?



Answer



For $x \in [1,\infty)$, you have $$0 \le \frac{1}{x\sqrt[3]{x^2+1}} \le \frac{1}{x^\frac{5}{3}}$$ and $\int_1^\infty \frac{dx}{x^\frac{5}{3}}$ is convergent.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...