Saturday, November 24, 2018

Prove sequence $a_n=n^{1/n}$ is convergent




How to prove that the sequence $a_n=n^{1/n}$ is convergent using definition of convergence?


Answer



Noticing that $n^\frac{1}{n} > 1$ for all $n$, it all comes down to showing that for any $\epsilon > 0$, there is a $n$ such that $(1+\epsilon) \geq n^\frac{1}{n}$, or by rearranging, that



$$
(1+\epsilon)^n \geq n
$$




Now, let's first of all choose an $m$ such that $(1+\epsilon)^{m}$ is some number bigger than 2, let's say the smallest number greater than $3$ that you can get. From here, swap $m$ for $2m$. This will make the left side a little over 3 times larger, and the right side 2 times larger. The next doubling will still double the right side, but the left side will increase roughly 9-fold. Repeating, we can easily see that the left side will at some point overtake the right side, and we have our $n$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...