I'm trying figure this out without l'Hospital's rule. But I don't know how should I start. Any hint, please?
$$\lim_{x\to \frac{\pi}2} \frac {1-\sin x}{\left(\frac\pi2 -x\right)^2 }$$
Answer
Set $t=\frac \pi2 - x,$
$$\lim_{x\to {\pi\over 2}} \frac {1-\sin x}{(\frac\pi2 -x)^2}=\lim_{t\to {0}} \frac {1-\cos t}{t^2}=\lim_{t\to {0}} \frac {2 \sin ^2(t/2)}{4(t/2)^2}={1\over 2}$$
No comments:
Post a Comment