Sunday, November 18, 2018

probability - Moments and non-negative random variables?



I want to prove that for non-negative random variables with distribution F:
$$E(X^{n}) = \int_0^\infty n x^{n-1} P(\{X≥x\}) dx$$




Is the following proof correct?



$$R.H.S = \int_0^\infty n x^{n-1} P(\{X≥x\}) dx = \int_0^\infty n x^{n-1} (1-F(x)) dx$$



using integration by parts:
$$R.H.S = [x^{n}(1-F(x))]_0^\infty + \int_0^\infty x^{n} f(x) dx = 0 + \int_0^\infty x^{n} f(x) dx = E(X^{n})$$



If not correct, then how to prove it?



Answer



Here's another way. (As the others point out, the statement is true if $E[X^n]$ actually exists.)



Let $Y = X^n$. $Y$ is non-negative if $X$ is.



We know
$$E[Y] = \int_0^{\infty} P(Y \geq t) dt,$$
so
$$E[X^n] = \int_0^{\infty} P(X^n \geq t) dt.$$
Then, perform the change of variables $t = x^n$. This immediately yields

$$E[X^n] = \int_0^{\infty} n x^{n-1} P(X^n \geq x^n) dx = \int_0^{\infty} n x^{n-1} P(X \geq x) dx.$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...