Saturday, November 3, 2018

elementary number theory - how can one find the value of the expression, $(1^2+2^2+3^2+cdots+n^2)$











how can one find the value of the expression, $(1^2+2^2+3^2+\cdots+n^2)$



Let,



$T_{2}(n)=1^2+2^2+3^2+\cdots+n^2$



$T_{2}(n)=(1^2+n^2)+(2^2+(n-1)^2)+\cdots$




$T_{2}(n)=((n+1)^2-2(1)(n))+((n+1)^2-2(2)(n-1))+\cdots$


Answer



Hint: $(n+1)^3-n^3=3n^2+3n+1$ and use telescopic sum.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...