Question: Use an expression for sin(5θ)sin(θ) , (θ≠kπ) , k an integer to find the roots of the equation x4−3x2+1=0 in trigonometric form?
What I have done
By using demovires theorem and expanding
cis(5θ)=(cos(θ)+isin(θ))5
cos(5θ)+isin(5θ)=cos5(θ)−10cos3(θ)sin2(θ)+5cos(θ)sin4(θ)+i(5cos4(θ)sin(θ)−10cos2(θ)sin3(θ)+sin5(θ)
Considering only Im(z)=sin(5θ)
sin(5θ)=5cos4(θ)sin(θ)−10cos2(θ)sin3(θ)+sin5(θ)
∴
\frac{\sin(5\theta)}{\sin(\theta)} = 5\cos^4(\theta) -10\cos^2(\theta)\sin^2(\theta) + \sin^4(\theta)
How should I proceed , I'm stuck trying to incorporate what I got into the equation..
Answer
HINT:
Using Prosthaphaeresis Formula,
\sin5x-\sin x=2\sin2x\cos3x=4\sin x\cos x\cos3x
If \sin x\ne0, \dfrac{\sin5x}{\sin x}-1=4\cos x\cos3x=4\cos x(4\cos^3x-3\cos x)=(4\cos^2x)^2-3(4\cos^2x)
OR replace \sin^2x with 1-\cos^2x in your 5\cos^4x-10\cos^2x\sin^2x + \sin^4x
Now if \sin5x=0,5x=n\pi where n is any integer
x=\dfrac{n\pi}5 where n\equiv0,\pm1,\pm2\pmod5
So, the roots of \dfrac{\sin5x}{\sin x}=0\implies x=\dfrac{n\pi}5 where n\equiv\pm1,\pm2\pmod5
But \dfrac{\sin5x}{\sin x}=(4\cos^2x)^2-3(4\cos^2x)+1
No comments:
Post a Comment