Tuesday, August 14, 2018

calculus - Find $limlimits_{ntoinfty}left(frac{a_1}{a_2}+frac{a_2}{a_3}+frac{a_3}{a_4}+...+frac{a_n}{a_1}right)$

Find $\lim\limits_{n\to\infty}\left(\frac{a_1}{a_2}+\frac{a_2}{a_3}+\frac{a_3}{a_4}+...+\frac{a_n}{a_1}\right)$ if {$a_n$} is random sequence with positive terms.




If sequence is increasing ($a_1>a_2>...>a_n$), then $L=+\infty$
What is the limit when sequence is decreasing?

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...