Tuesday, August 14, 2018

linear algebra - Simple Eigenspace Calculation


I attempted to find the eigenvalues and corresponding eigenvectors for this matrix. $$ A= \begin{bmatrix} \frac13 & \frac13 & \frac13 \\ \frac13 & \frac13 & \frac13 \\ \frac13 & \frac13 & \frac13 \\ \end{bmatrix} $$


The eigenvalues are easily computed as $\lambda_1 = 0, \lambda_2 = 0,$ and $\lambda_3 = 1$.


The corresponding eigenspace with $\lambda_3$ I calculated is $\{(\alpha,\alpha,\alpha):\alpha \in \mathbb{R} \} = span(1,1,1).$


However, when I try to find the two eigenvectors corresponding to the zero eigenvalue, I get three eigenvectors when I know there should only be two:


$(A-I\lambda)x = \begin{bmatrix} \frac13 & \frac13 & \frac13 \\ \frac13 & \frac13 & \frac13 \\ \frac13 & \frac13 & \frac13 \\ \end{bmatrix} $ $ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix}= $ $ \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix} $


$\rightarrow x_1+x_2+x_3 = 0 $


Which yields:



$\{(\alpha,-\alpha,0):\alpha \in \mathbb{R} \} = span(1,-1,0).$


$\{(\alpha,0,-\alpha):\alpha \in \mathbb{R} \} = span(1,0,-1).$


$\{(0,\alpha,-\alpha):\alpha \in \mathbb{R} \} = span(0,1,-1).$


Why am I computing 3 instead of 2 eigenspaces for eigenvalue of $0$?


Answer



Note that these $3$ vectors are linearly dependent. Just subtract any two of them..
So they generate a 2d subspace.


Geometrically, $x_1+x_2+x_3=0$ is the plane through the origin orthogonal to $(1,1,1)^T$.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...