find the limit value
$$\lim_{n\to\infty}\sum_{j=1}^{n^2}\dfrac{n}{n^2+j^2}$$
this following is my methods:
let $$S_{n}=\sum_{j=1}^{n^2}\dfrac{n}{n^2+j^2}=\sum_{j=1}^{n^2}\dfrac{1}{1+\left(\dfrac{j}{n}\right)^2}\dfrac{1}{n}$$ since $$\int_{\dfrac{j}{n}}^{\dfrac{j+1}{n}}\dfrac{dx}{1+x^2}<\dfrac{1}{1+\left(\dfrac{j}{n}\right)^2}\cdot\dfrac{1}{n}<\int_{\dfrac{j-1}{n}}^{\dfrac{j}{n}}\dfrac{dx}{1+x^2}$$ so $$\int_{\dfrac{1}{n}}^{\dfrac{n^2+1}{n}}\dfrac{dx}{1+x^2}
and note
$$\lim_{n\to\infty}\int_{\dfrac{1}{n}}^{\dfrac{n^2+1}{n}}\dfrac{dx}{1+x^2}=\lim_{n\to\infty}\int_{0}^{n}\dfrac{dx}{1+x^2}=\int_{0}^{infty}\dfrac{dx}{1+x^2}=\dfrac{\pi}{2}$$ so $$\lim_{n\to\infty}\sum_{j=1}^{n^2}\dfrac{n}{n^2+j^2}=\dfrac{\pi}{2}$$
I think this problem have other nice methods? Thank you
and follow other methods
$$\lim_{n\to\infty}\sum_{j=1}^{n^2}\dfrac{n}{n^2+j^2}=\lim_{n\to\infty}\int_{0}^{n}\dfrac{1}{1+x^2}dx=\dfrac{\pi}{2}$$ But there is a book say This methods is wrong,why, and where is wrong? Thank you
No comments:
Post a Comment