Tuesday, August 7, 2018

limits - How to find $limlimits_{ntoinfty}sumlimits_{j=1}^{n^2}frac{n}{n^2+j^2}$

find the limit value



$$\lim_{n\to\infty}\sum_{j=1}^{n^2}\dfrac{n}{n^2+j^2}$$



this following is my methods:



let $$S_{n}=\sum_{j=1}^{n^2}\dfrac{n}{n^2+j^2}=\sum_{j=1}^{n^2}\dfrac{1}{1+\left(\dfrac{j}{n}\right)^2}\dfrac{1}{n}$$ since $$\int_{\dfrac{j}{n}}^{\dfrac{j+1}{n}}\dfrac{dx}{1+x^2}<\dfrac{1}{1+\left(\dfrac{j}{n}\right)^2}\cdot\dfrac{1}{n}<\int_{\dfrac{j-1}{n}}^{\dfrac{j}{n}}\dfrac{dx}{1+x^2}$$ so $$\int_{\dfrac{1}{n}}^{\dfrac{n^2+1}{n}}\dfrac{dx}{1+x^2}


and note



$$\lim_{n\to\infty}\int_{\dfrac{1}{n}}^{\dfrac{n^2+1}{n}}\dfrac{dx}{1+x^2}=\lim_{n\to\infty}\int_{0}^{n}\dfrac{dx}{1+x^2}=\int_{0}^{infty}\dfrac{dx}{1+x^2}=\dfrac{\pi}{2}$$ so $$\lim_{n\to\infty}\sum_{j=1}^{n^2}\dfrac{n}{n^2+j^2}=\dfrac{\pi}{2}$$



I think this problem have other nice methods? Thank you


and follow other methods



$$\lim_{n\to\infty}\sum_{j=1}^{n^2}\dfrac{n}{n^2+j^2}=\lim_{n\to\infty}\int_{0}^{n}\dfrac{1}{1+x^2}dx=\dfrac{\pi}{2}$$ But there is a book say This methods is wrong,why, and where is wrong? Thank you


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...