find 36+3⋅56⋅9+3⋅5⋅76⋅9⋅12+⋯
I had (1−x)−pq in mind. S=36+3⋅56⋅9+3⋅5⋅76⋅9⋅12+⋯ S+1=1+36+3⋅56⋅9+3⋅5⋅76⋅9⋅12+⋯ S+1=1+32!⋅3+3⋅(3+2)3!⋅9+3⋅(3+2)⋅(3+4)4!⋅27+⋯ S+1=1+32!(232)+3⋅(3+2)3!(232)2+3⋅(3+2)⋅(3+4)4!(232)3+⋯ S+1=(1−23)−32 I got S=3√3−1
But answer given is S=3√3−4
Answer
In the last step, you miss some multiple of 3, and you miss one term of the expansion.
S=∑n≥1(2n+1)!!(n+1)!3n=∑n≥1(−12n+1)(−2)n+13n=3∑n≥1(−12n+1)(−23)n+1=3((1−23)−12−1−13)=3√3−4.
No comments:
Post a Comment