Tuesday, September 26, 2017

combinatorics - Hockey-Stick Theorem for Multinomial Coefficients



Pascal's triangle has this famous hockey stick identity.
$$ \binom{n+k+1}{k}=\sum_{j=0}^k \binom{n+j}{j}$$
Wonder what would be the form for multinomial coefficients?


Answer



$$\binom{a_1+a_2+\cdots+a_t}{a_1,a_2,\cdots,a_t}=\sum_{i=2}^t \sum_{j=1}^{i-1} \sum_{k=1}^{a_i} \binom{ a_1+a_2+\cdots+a_{i-1}+k }{a_1,a_2,\cdots,a_j-1,\cdots,a_{i-1},k }$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...