Tuesday, September 19, 2017

real analysis - Approximation of $ int_{0}^{infty} frac{ln(t)}{sqrt{t}}e^{-nt} mathrm dt,nrightarrowinfty $

How can I find the first term of the series expansion of


$$ \int_{0}^{\infty} \frac{\ln(t)}{\sqrt{t}}e^{-nt} \mathrm dt,n\rightarrow\infty ?$$


Or:



As $$ \int_{0}^{\infty} \frac{\ln(t)}{\sqrt{t}}e^{-nt} \mathrm dt = \frac{1}{\sqrt{n}}\int_{0}^{\infty} \frac{\ln(\frac{t}{n})}{\sqrt{t}}e^{-t} \mathrm dt $$


What is $$ \lim_{n\rightarrow\infty} \int_{0}^{\infty} \frac{\ln(\frac{t}{n})}{\sqrt{t}}e^{-t} \mathrm dt?$$

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...