I want to investigate the value of $\lim_\limits{x \to 0+}{e^{\frac{1}{x^2}}\sin x}$. Since the expontial tends really fast to infinity but the sine quite slowly to 0 in comparison I believe the limit to be infinity. But I cannot find I way to prove it. I tried rewriting using the standard limit $\frac{\sin x}{x}$ as $\frac{\sin x}{x}\cdot xe^{\frac{1}{x^2}}$ but I still get an indeterminate form "$1 \cdot 0 \cdot \infty$".
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
No comments:
Post a Comment