Saturday, September 16, 2017

Mathematical Induction Proof 1




Prove that for every integer $ n \geq 1$, we have



$\displaystyle \sum_{j=1}^n j^3 = \left(\dfrac{n(n+1)}{2}\right)^2$



I know how to prove an induction proof, but I just can't get the algebra down on this problem. Can anyone help?


Answer



$$\left(\frac{n(n+1)}2\right)^2+(n+1)^3$$
$$=\frac{n^2(n+1)^2}4+(n+1)^3$$
$$=\frac{n^2(n+1)^2}4+\frac{4(n+1)^3}4$$




$$=\frac{n^2(n+1)^2}4+\frac{4(n+1)(n+1)^2}4$$$$=\frac{(n+1)^2}4\left[n^2+4(n+1)\right]$$
$$=\frac{(n+1)^2}4(n^2+4n+4)$$
$$=\frac{(n+1)^2}4(n+2)^2$$
$$=\frac{(n+1)^2(n+2)^2}4$$
$$=\left(\frac{(n+1)(n+2)}2\right)^2.$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...