Prove that for every integer $ n \geq 1$, we have
$\displaystyle \sum_{j=1}^n j^3 = \left(\dfrac{n(n+1)}{2}\right)^2$
I know how to prove an induction proof, but I just can't get the algebra down on this problem. Can anyone help?
Answer
$$\left(\frac{n(n+1)}2\right)^2+(n+1)^3$$
$$=\frac{n^2(n+1)^2}4+(n+1)^3$$
$$=\frac{n^2(n+1)^2}4+\frac{4(n+1)^3}4$$
$$=\frac{n^2(n+1)^2}4+\frac{4(n+1)(n+1)^2}4$$$$=\frac{(n+1)^2}4\left[n^2+4(n+1)\right]$$
$$=\frac{(n+1)^2}4(n^2+4n+4)$$
$$=\frac{(n+1)^2}4(n+2)^2$$
$$=\frac{(n+1)^2(n+2)^2}4$$
$$=\left(\frac{(n+1)(n+2)}2\right)^2.$$
No comments:
Post a Comment