Thursday, August 31, 2017

Solving an equation involving binomial coefficients and complex numbers



Question:



Solve the following equation for $x$:



$$\sum_{k=0}^{n}\binom{n}{k}x^{k}\cos(k\theta )=0$$



Attempt:




I think this equation come from:



$$(x\cos\theta+ix\sin\theta)^{k}$$



Is that right?



I don't know what to do after that.


Answer



Assuming $x,\theta \in \mathbb{R}$, $n\in\mathbb{Z}$:




$$\sum _{k=0}^{n}{n\choose k}{x}^{k}\cos \left( k\theta \right) =\frac{1}{2}
\left( 1+x{{\rm e}^{i\theta}} \right) ^{n}+\frac{1}{2} \left( 1+x{{\rm e}^{
-i\theta}} \right) ^{n}=0,$$
$$\Rightarrow\dfrac{
\left( 1+x{{\rm e}^{i\theta}} \right) ^{n}}{\left( 1+x{{\rm e}^{
-i\theta}} \right) ^{n}}=-1={\rm e}^{i\pi},$$
$$\dfrac{
\left( 1+x{{\rm e}^{i\theta}} \right)}{\left( 1+x{{\rm e}^{
-i\theta}} \right)}={\rm exp}\left({\dfrac{im\pi}{n}}\right):m \,\text{odd}\in \mathbb{Z},$$
$$x=\dfrac{\sin \left( {\dfrac {\pi m}{2n}} \right)}{\sin \left(

\theta-{\dfrac {\pi m}{2n}} \right) }.$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...