May I know if my proof is correct? Thank you.
This is equivalent to finding x such that 777^{777} \equiv x \pmod{100}.
By Euler's theorem, 777^{\ \psi(100)} =777^{\ 40}\equiv 1 \pmod{100}.
It follows that 777^{760} \equiv 1 \pmod{100} and 777^{\ 17} \equiv x \pmod{100}.
By Binomial expansion, 777^{\ 17} = 77^{\ 17}+700m, for some positive integer m.
Hence 77^{17} \equiv x \pmod{100} \Longleftrightarrow \ x= 97.
No comments:
Post a Comment