Saturday, August 12, 2017

real analysis - Computing limlimitsntoinftyintfracpi20frac(sin(x))n1sin(x),mathrmdx




\def\d{\mathrm{d}}I would like to compute the following limit, \displaystyle{\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x} .





I am looking for a high school answer.



I tried writing \lim_{n \to \infty} \int_0^{\frac{\pi}{2}}{\frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x = \lim_{n \to \infty} \lim_{ε \to \frac{\pi}{2}}\int_0^ε{\frac{(\sin(x))^n}{1-\sin(x)}}\,\d x},



but it doesn't help me, since 1 - \sin(x) \leq 1, \forall x \in \left[0, \dfrac{\pi}{2}\right].


Answer




Your integral does event convergence, for each n we have \int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}=\infty





In fact Since see here \frac2πx≤\sin x≤x,~~~~~~\forall x \in \left[0, \displaystyle \frac{\pi}{2}\right] we have



\frac{(\frac2πx)^n}{1-\frac2πx}≤\frac{(\sin x)^n}{1-\sin x}≤\frac{x^n}{1-x}\implies \int_0^{\fracπ2}\frac{(\frac2πx)^n}{1-\frac2πx}dx≤\int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}≤\int_0^{\fracπ2}\frac{x^n}{1-x}dx
then let u= \frac2πx the we get



\infty=\int_0^{1}\frac{x^n}{1-x}dx≤\int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}≤\int_0^{1}\frac{x^n}{1-x}dx+\int_1^{\fracπ2}\frac{x^n}{1-x}dx=\infty



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...