Wednesday, August 23, 2017

complex analysis - How to prove Euler's formula: $e^{ivarphi}=cos(varphi) +isin(varphi)$?


Could you provide a proof of Euler's formula: $e^{i\varphi}=\cos(\varphi) +i\sin(\varphi)$?


Answer



Assuming you mean $e^{ix}=\cos x+i\sin x$, one way is to use the MacLaurin series for sine and cosine, which are known to converge for all real $x$ in a first-year calculus context, and the MacLaurin series for $e^z$, trusting that it converges for pure-imaginary $z$ since this result requires complex analysis.


The MacLaurin series: \begin{align} \sin x&=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1}=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots \\\\ \cos x&=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n)!}x^{2n}=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots \\\\ e^z&=\sum_{n=0}^{\infty}\frac{z^n}{n!}=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\cdots \end{align}



Substitute $z=ix$ in the last series: \begin{align} e^{ix}&=\sum_{n=0}^{\infty}\frac{(ix)^n}{n!}=1+ix+\frac{(ix)^2}{2!}+\frac{(ix)^3}{3!}+\cdots \\\\ &=1+ix-\frac{x^2}{2!}-i\frac{x^3}{3!}+\frac{x^4}{4!}+i\frac{x^5}{5!}-\cdots \\\\ &=1-\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots +i\left(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots\right) \\\\ &=\cos x+i\sin x \end{align}


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...