Saturday, August 12, 2017

calculus - $lim_{xrightarrow 6} frac{sqrt{x+3}-3}{x-6}$ without L'Hôpital's rule



I'm trying to do the following limit



$$\lim_{x\rightarrow 6} \frac{\sqrt{x+3}-3}{x-6}$$



without using L'Hôpital's rule.




Anyone knows any neat tricks that can be used?


Answer



Multiply by conjugate of numerator:



$$\frac{\sqrt{x+3}-3}{x-6}\cdot\frac{\sqrt{x+3}+3}{\sqrt{x+3}+3}=\frac{x-6}{(x-6)(\sqrt{x+3}+3)}=\frac1{\sqrt{x+3}+3}\xrightarrow[x\to6]{}\frac16$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...