I'm trying to do the following limit
$$\lim_{x\rightarrow 6} \frac{\sqrt{x+3}-3}{x-6}$$
without using L'Hôpital's rule.
Anyone knows any neat tricks that can be used?
Answer
Multiply by conjugate of numerator:
$$\frac{\sqrt{x+3}-3}{x-6}\cdot\frac{\sqrt{x+3}+3}{\sqrt{x+3}+3}=\frac{x-6}{(x-6)(\sqrt{x+3}+3)}=\frac1{\sqrt{x+3}+3}\xrightarrow[x\to6]{}\frac16$$
No comments:
Post a Comment