I rewrote it by writing the tan as sin/cos and cross multiplying:
$$\frac{\sin{(\tan{\theta})}-\sin{(\sin{\theta})}}{\tan{(\tan{\theta})}-\tan{(\sin{\theta})}}= \frac{\sin{(\tan{\theta})}-\sin{(\sin{\theta})}}{\frac{\sin{(\tan{\theta})}\cos{(\sin{\theta})-\cos{(\tan{\theta})\sin{(\sin{\theta})}}}}{\cos{(\tan{\theta})\cos{(\sin{\theta})}}}}.$$
Using addition formula for sine i get: $$\sin{(\tan{\theta})}\cos{(\sin{\theta})-\cos{(\tan{\theta})\sin{(\sin{\theta})}}}=\sin{(\tan{\theta}}-\sin{\theta}), $$
Since $\cos{(\tan{\theta})}\cos{(\sin{\theta})}\rightarrow1$ as $\theta\rightarrow 0,$ the problem is reduced to finding the limit of $$\lim_{\theta\rightarrow0}\frac{\sin{(\tan{\theta})-\sin{(\sin{\theta})}}}{\sin{(\tan{\theta}-\sin{\theta})}}.$$
Answer
Using the Mean Value Theorem,
$$
\begin{align}
\lim_{\theta\to0}\frac{\sin(\tan(\theta))-\sin(\sin(\theta))}{\tan(\tan(\theta))-\tan(\sin(\theta))}
&=\lim_{\theta\to0}\frac{\frac{\sin(\tan(\theta))-\sin(\sin(\theta))}{\tan(\theta)-\sin(\theta)}}{\frac{\tan(\tan(\theta))-\tan(\sin(\theta))}{\tan(\theta)-\sin(\theta)}}\\
&=\lim_{\theta\to0}\frac{\cos(\xi_1(\theta))}{\sec^2(\xi_2(\theta))}\\[6pt]
&=\frac{\cos(0)}{\sec^2(0)}\\[12pt]
&=1
\end{align}
$$
where $\xi_1(\theta)$ and $\xi_2(\theta)$ are between $\sin(\theta)$ and $\tan(\theta)$.
No comments:
Post a Comment