I rewrote it by writing the tan as sin/cos and cross multiplying:
sin(tanθ)−sin(sinθ)tan(tanθ)−tan(sinθ)=sin(tanθ)−sin(sinθ)sin(tanθ)cos(sinθ)−cos(tanθ)sin(sinθ)cos(tanθ)cos(sinθ).
Using addition formula for sine i get: sin(tanθ)cos(sinθ)−cos(tanθ)sin(sinθ)=sin(tanθ−sinθ),
Since cos(tanθ)cos(sinθ)→1 as θ→0, the problem is reduced to finding the limit of lim
Answer
Using the Mean Value Theorem,
\begin{align} \lim_{\theta\to0}\frac{\sin(\tan(\theta))-\sin(\sin(\theta))}{\tan(\tan(\theta))-\tan(\sin(\theta))} &=\lim_{\theta\to0}\frac{\frac{\sin(\tan(\theta))-\sin(\sin(\theta))}{\tan(\theta)-\sin(\theta)}}{\frac{\tan(\tan(\theta))-\tan(\sin(\theta))}{\tan(\theta)-\sin(\theta)}}\\ &=\lim_{\theta\to0}\frac{\cos(\xi_1(\theta))}{\sec^2(\xi_2(\theta))}\\[6pt] &=\frac{\cos(0)}{\sec^2(0)}\\[12pt] &=1 \end{align}
where \xi_1(\theta) and \xi_2(\theta) are between \sin(\theta) and \tan(\theta).
No comments:
Post a Comment