Tuesday, August 8, 2017

calculus - Compute limthetarightarrow0fracsin(tantheta)sin(sintheta)tan(tantheta)tan(sintheta)



I rewrote it by writing the tan as sin/cos and cross multiplying:



sin(tanθ)sin(sinθ)tan(tanθ)tan(sinθ)=sin(tanθ)sin(sinθ)sin(tanθ)cos(sinθ)cos(tanθ)sin(sinθ)cos(tanθ)cos(sinθ).



Using addition formula for sine i get: sin(tanθ)cos(sinθ)cos(tanθ)sin(sinθ)=sin(tanθsinθ),



Since cos(tanθ)cos(sinθ)1 as θ0, the problem is reduced to finding the limit of lim


Answer




Using the Mean Value Theorem,
\begin{align} \lim_{\theta\to0}\frac{\sin(\tan(\theta))-\sin(\sin(\theta))}{\tan(\tan(\theta))-\tan(\sin(\theta))} &=\lim_{\theta\to0}\frac{\frac{\sin(\tan(\theta))-\sin(\sin(\theta))}{\tan(\theta)-\sin(\theta)}}{\frac{\tan(\tan(\theta))-\tan(\sin(\theta))}{\tan(\theta)-\sin(\theta)}}\\ &=\lim_{\theta\to0}\frac{\cos(\xi_1(\theta))}{\sec^2(\xi_2(\theta))}\\[6pt] &=\frac{\cos(0)}{\sec^2(0)}\\[12pt] &=1 \end{align}

where \xi_1(\theta) and \xi_2(\theta) are between \sin(\theta) and \tan(\theta).


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...