Tuesday, November 29, 2016

real analysis - How do we calculate this sum $sum_{n=1}^{infty} frac{1}{n(n+1)cdots(n+p)}$?



I know that this sum $$\sum_{n=1}^{\infty} \frac{1}{n(n+1)\cdots(n+p)}$$ ($p$ fixed) converges which can be easily proved using the ratio criterion, but I couldn't calculate it.




I need help in this part.



Thanks a lot.


Answer



Hint:
$$\frac{p}{n(n+1)\cdots(n+p)}=\frac{1}{(n)(n+1)\cdots (n+p-1)}-\frac{1}{(n+1)(n+2)\cdots (n+p)}.$$


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...